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Abstract
Background: The aim of this study is to systematically review 
the literature to summarize the evidence surrounding the 
clinical utility of artificial intelligence (AI) in the field of mam-
mography. Databases from PubMed, IEEE Xplore, and Sco-
pus were searched for relevant literature. Studies evaluating 
AI models in the context of prediction and diagnosis of 
breast malignancies that also reported conventional perfor-
mance metrics were deemed suitable for inclusion. From 90 
unique citations, 21 studies were considered suitable for our 
examination. Data was not pooled due to heterogeneity in 
study evaluation methods. Summary: Three studies showed 
the applicability of AI in reducing workload. Six studies dem-
onstrated that AI can aid in diagnosis, with up to 69% reduc-
tion in false positives and an increase in sensitivity ranging 
from 84 to 91%. Five studies show how AI models can inde-
pendently mark and classify suspicious findings on conven-
tional scans, with abilities comparable with radiologists. Sev-
en studies examined AI predictive potential for breast cancer 
and risk score calculation. Key Messages: Despite limitations 

in the current evidence base and technical obstacles, this re-
view suggests AI has marked potential for extensive use in 
mammography. Additional works, including large-scale pro-
spective studies, are warranted to elucidate the clinical util-
ity of AI. © 2021 S. Karger AG, Basel

Introduction

Mammography remains a critical tool for screening 
and diagnosing breast cancers. Advocates for mammog-
raphy screening refer to its widely documented contribu-
tion in reducing breast cancer mortality rates [1–4]. 
While mammographic screening has established reduc-
tion in mortality, like any examination, there is a false-
positive rate associated with screening mammography. 
While only 7–12% of women are falsely recalled after only 
one mammogram, over 50% of women who have under-
gone annual mammography screening for 10 years will be 
recalled incorrectly [5, 6]. These false positives translate 
into increased benign biopsies, increased spending, and 
negative psychological effects for patients involved [7–9]. 
Likewise, potentially malignant neoplasms are at risk of 
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being missed due to their small size or surrounding dense 
fibroglandular tissue [10]. False-negative mammogram 
results have a higher incidence in women aged 50–89 
with previous benign biopsies. However, the rate of false-
negative results is still relatively low, reported in 1.0 to 1.5 
per 1,000 women [11]. Although its accuracy continues 
to improve with technical improvements, diagnostic 
mammography is the gold standard for evaluation of 
breast cancer [12]. In order to further increase the accu-
racy and to further reduce the rates of false positives and 
false negatives, recent advances in artificial intelligence 
(AI) have been exploited to develop software capable of 
aiding radiologists in clinical practice.

AI is a field incorporating computer science, engineer-
ing, and statistics to produce intelligent computer pro-
grams capable of performing tasks that would otherwise 
require human intelligence [13]. AI has been widely im-
plemented in healthcare, ranging from one of its earliest 
uses in blood disease diagnosis to current implementa-
tions in genomic medicine to characterize mutations [14, 
15]. Although most AI in medicine is limited to research, 
certain commercial algorithms have already been ap-
proved for use by radiologists in clinical practice to help 
decrease erroneous readings [16–18]. Currently, many of 
these AI-based tools designed for aiding radiologists and 
interpreting mammograms are developed with machine 
learning. Machine learning is a specific domain of AI and 
is concerned with constructing algorithms used by com-
puters to perform certain tasks without using explicit in-
structions, but instead relying on inference and patterns 
and are able to improve their performance with experi-
ence [19].

In regards to mammography, the program usually 
trains on clean labelled mammograms with abnormal di-
agnosis and normal anatomy serving as labels. As the pro-
gram trains with greater and more diverse images, it ad-
justs the algorithms used with the ultimate goal of becom-
ing more accurate in reading images and predicting 
patterns. As recent advancements allow for the increased 
scalability of AI software into clinical practice, it is im-
perative to examine the current environment surround-
ing AI in mammography.

In this literature review, we critically evaluate pub-
lished literature describing machine-learning algo-
rithms currently used in mammography and their effi-
cacy in reducing erroneous readings. We conclude with 
future speculations of the field with a focus on the ef-
fects of AI.

Methods and Materials

The primary aim was to evaluate existing literature that used 
AI in mammography. Several databases were searched including 
PubMed, IEEE Xplore, and Scopus, with the search terms de-
scribed in Table 1. Studies were limited to the interval January 2015 
to March 2020. Exclusion criteria included (1) lack of convention-
al performance metrics such as sensitivity, specificity, area under 
the receiver operating characteristic curve (AUROC), etc., (2) the 
study investigated the accuracy of image segmentation rather than 
disease classification, (3) the study only published guidelines, re-
view articles, and abstracts, (4) animal studies, (5) non-English 
sources, (6) sample size smaller than 10. After removing duplicate 
studies and those with redundant or non-novel information, 60 
unique studies were ultimately included in this review.

Results

Reducing Diagnostic Workload
One of the main potentials of AI in mammography is 

to reduce workload by helping expedite the interpretation 
of more obvious cases and thereby allowing radiologists to 
focus on more challenging cases. Most of the models that 
classify images use deep learning (DL). DL is a subset of 
machine learning where algorithms are created and oper-
ate similarly to those in machine learning, but there are 
several “layers” of these algorithms – each providing a 
unique interpretation of the image feature (e.g., shape, 
morphology, texture) it analyzes [19]. DL involves train-
ing a complex neural network, in which data from the in-
put layer feeds into the first hidden layer, which processes 
the data further and is sent to the next layer of algorithms 
(each layer consists of nodes and is loosely modelled from 

Table 1. Literature sources and search terms

Literature 
sources

Search terms

PubMed “Artificial Intelligence [Mesh]” AND 
“mammography”

IEEE Xplore “Mammography” AND “Artificial Intelligence”, 
filter applied: Journals only

Scopus TITLE-ABS-KEY (mammography AND 
“artificial intelligence”) AND (LIMIT-TO 
(PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 
2019) OR LIMIT-TO (PUBYEAR, 2018) OR 
LIMIT-TO (PUBYEAR, 2017) OR LIMIT-TO 
(PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 
2015)) AND (LIMIT-TO (DOCTYPE, “ar”))
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neurons), until the output layer is reached. Before the DL 
system is implemented, however, it is important to exam-
ine whether the reduced caseload will cause any detrimen-
tal effects to radiologists’ abilities to classify.

A study by Rodríguez-Ruiz et al. [17] used a commer-
cially available DL system (Transpara 1.4.0, Screenpoint 
Medical BV) to pre-select digital mammogram images 
based on the machine learning interpreted likelihood of 
breast cancer. The system assigned a numerical likelihood 
score to each image from 1 to 10 (10 implying high likeli-
hood cancer was present in the exam). Pre-selection sce-
narios included exams-to-be-evaluated as those with 
scores greater than a certain likelihood score. For exam-
ple, one scenario would only include images scored 1 or 
higher to be evaluated by radiologists. This was done for 
all likelihood scores 1–9. The radiologists’ average 
 AUROC, a metric used to evaluate ability to classify, was 
compared before versus after pre-selection for each sce-
nario. An AUROC of 1 represents perfect classification 
ability, while 0.5 represents incorrect random classifica-
tion. Although the absolute area under the curve was not 
reported, the average AUROC of the radiologists was 
non-inferior at a margin of 0.05 for 8 out of the 9 scenar-
ios tested (p < 0.05) [17]. Thus, pre-selecting cases did not 
affect the ability of radiologists to classify in a majority of 
the scenarios tested.

Another recent study by Yala et al. [20] developed an 
in-house DL model to triage out true-negative cases. Af-
ter comparing the performance of the radiologists during 
their original screening assessment to a retrospective sce-
nario where the radiologists did not read any of the DL-
triaged cases, the model showed a workload reduction of 
19.3%. The study did not specify how accurate the ma-
chine learning algorithm was at identifying true nega-
tives. The radiologists in the study showed a significant 
improvement in specificity (93.5–94.2%; p = 0.002) and a 
non-inferior sensitivity (90.6 vs. 90.1%; p < 0.001) at a 
margin of 0.05 [20].

Another method by which these models can reduce 
workload is through consensus. Some clinical settings 
utilize a double-reading process where two radiologists 
examine the same image. The study by McKinney et al. 
[21] replaced the second reader with their AI model. The 
conclusion of the first reader was deemed final when the 
model and first reader agreed. Any disagreement invoked 
the second reader’s opinions as usual. The study conclud-
ed that this process can alleviate workload of the second 
reader up to 88% [21]. These studies illustrated the abil-
ity of AI to reduce caseload while not affecting the overall 
detection performance of radiologists, and may in fact aid 

their detection performance. Of note, two readers are not 
a standard of care clinical practice yet in the US due to 
cost; however, this study points towards future possibility 
towards reduction in cost for a second reader if aided by 
machine learning if clinical standard of care moves in that 
direction in future.

Diagnostic Support
In addition to reducing caseload, models have been de-

veloped to aid radiologists examining mammograms in re-
al-time. Rodríguez-Ruiz et al. [22] compared breast cancer 
detection performance of radiologists aided versus unaided 
by a commercial AI system. The system provided radiolo-
gists with interactive decision support and cancer likeli-
hood scores. On average, AUROC increased with AI sup-
port compared to unaided (0.89 vs. 0.87, respectively; p = 
0.002). Sensitivity increased (83–86%; p = 0.046) and read-
ing time per case was similar (146 s unaided vs. 149 s aided; 
p = 0.15) [22]. An additional study showed similar results 
where radiologists who used an AI-based computer-aided 
detection (AI-CAD) software showed an increase in their 
classification performance; AUROC increased with AI-
CAD support (0.76 to 0.815; p < 0.01) (Table 2) [18].

A drawback of currently available CAD systems is the 
high rate of false-positive markings, which may hinder 
performance of radiologists. A recent retrospective study 
compared a commercial AI-CAD (cmAssist, CureMe-
trix) to a conventional CAD system (ImageChecker, Ho-
logic) with respect to the false-positive findings marked. 
The findings showed an overall 69% reduction in false 
positives per image (FPPI) using AI-CAD compared to 
CAD. Specifically, AI-CAD exhibited 83% reduction in 
FPPI for calcifications and 56% reduction for masses. 
There was no significant decrease in sensitivity [23]. Fur-
ther studies have also created their own in-house models 
to be able to mark suspicious masses for radiologists to 
scrutinize more carefully. The mass segmentation model 
from Hmida et al. [24] exhibits 91.1% sensitivity, while 
another DL model from Sapate et al. [25] also shows 91% 
specificity and a sensitivity of 84%.

Table 2. Comparison of area under receiver operator curve of 
radiologists aided versus unaided by AI in breast cancer diagnosis 
on digital mammograms

Study Unaided Aided Significance

Rodríguez-Ruiz et al. [22], 2019 0.87 0.89 p < 0.002
Watanabe et al. [18], 2019 0.76 0.815 p < 0.01
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To improve digital mammogram readings through a 
different approach, Zeng et al. [26] incorporated radiolo-
gists’ subjective thresholds from Breast Imaging Report-
ing and Data System (BI-RADS). Using the BI-RADS de-
scriptors and decision classification categories assigned 
to mammograms by radiologists, a probabilistic Bayesian 
network was modelled. A Bayesian network represents 
the probability distribution of random variables with pos-
sible causal relationships [27]. Zeng et al. [26] hypothe-
sized that each BI-RADS assessment category was thought 
to have a probability associated with it leading the radi-
ologist to classify the mammogram as a positive or nega-
tive finding. The probability thresholds used by each ra-
diologist are subjective. Therefore, if a Bayesian network 
incorporated the unique threshold observed from a radi-
ologist, it may aid to reduce erroneous readings. Indeed, 
the study found that this method resulted in a 28.9% re-
duction of false positives [26]. This novel technique ex-
emplifies how AI can gauge the conservativeness of a ra-
diologist and use the data to support its classification de-
cisions.

Independent Detection and Classification
Programs that can interpret and identify abnormali-

ties in mammograms without radiologist intervention 
have also been evaluated. When comparing commercial 
AI software (Transpara 1.4.0, Screenpoint Medical BV) to 
radiologists in the detection of breast cancer in digital 
mammograms, the performance of the AI system was 
found to be statistically non-inferior to the average per-
formance of the radiologists at a non-inferiority margin 
of 0.05 [28]. Agnes et al. [29] recently proposed a DL 
model that can categorize mammograms into normal, 
malignant, and benign categories with an overall sensitiv-
ity of 96%. Another group evaluated three different DL 
models for classifying a breast lesion as benign or malig-
nant. The overall accuracies ranged from 88 to 95% [30].

While it is useful to distinguish between negative and 
positive cases, it is also clinically important to discrimi-
nate recalled-benign from malignant cases. Aboutalib et 
al. [31] developed a DL model that boasts an AUROC of 
up to 0.96 for correctly identifying recalled but biopsy-
benign cases from malignant and negative cases.

DL tools are also being developed for novel breast-im-
aging techniques. Digital breast tomosynthesis (DBT) is 
an emerging tool to overcome limitations of convention-
al full-field digital mammography (FFDM) and allows 
volumetric reconstruction of the whole breast. DL mod-
els have already been tested on DBT datasets, with future 
plans to incorporate DBT and FFDM images for more 

accurate diagnosis [32]. Likewise, images from contrast-
enhanced digital mammography are being used to train 
DL models with the goal of extracting more image char-
acteristics for better diagnostic ability [33].

Breast Cancer Prediction
Previous studies have explored breast cancer risk fac-

tors related to hormonal and genetic information [34, 
35]. Mammographic breast density, which corresponds 
to the amount of fibroglandular tissue, has received sub-
stantial attention as a major risk factor [36]. Indeed, com-
monly used breast cancer risk assessments, such as the 
Tyrer-Cuzick model, are based on mammographic den-
sity estimations and questionnaires [37]. However, the 
use of breast density as a substitute to mammograms for 
risk prediction is limited because density estimates vary 
across radiologists and compressing the detailed infor-
mation of digital scans into a single number loses some of 
the inherent data [38]. Studies have shown the possibility 
of unique image features extractable by DL, beyond breast 
density, which can be used to create more accurate breast 
cancer risk models.

In a retrospective study, Debrower et al. [39] devel-
oped a DL model that calculated breast cancer risk scores 
(DL risk score) from mammograms and compared the 
prediction ability of these scores to conventional dense 
area and percentage density values. The AUROC for us-
ing the age-adjusted DL risk scores were significantly 
higher than using the dense area and percentage density 
values (DL risk score: 0.65, dense area: 0.60, percentage 
density: 0.57; p < 0.001) [39]. A similar study communi-
cated a DL model that showed greater predictive potential 
(odds ratio = 4.42 [95% CI: 3.4–5.7]) compared to using 
breast density alone (odds ratio = 1.67 [95% CI: 1.4–1.9]) 
[40]. Arefan et al. [41] compared two DL models against 
a basic linear regression model using breast density, 
showing the models’ two different prior normal image 
types (mediolateral oblique, craniocaudal) to assess risk 
prediction efficacy. They found that both DL models con-
sistently exhibited superiority in predicting the short-
term breast cancer risk than the density-based model 
[41].

Breast density is also an important risk factor for in-
terval breast cancers, which are cancers detected within 
12 months after normal mammographic screening and 
comprise up to 28% of all breast cancers in the United 
States [42]. Hinton et al. [43] implemented a model to 
predict whether a pre-cancer mammogram will result in 
a screen-detected or interval cancer within 12 months 
from imaging. When using the BI-RADS density alone, 
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the capacity to correctly distinguish interval cancers from 
screen-detected cancers was moderate (AUROC = 0.65). 
Yet, when optimized with the mammograms, the model 
achieved an AUROC of 0.82 (Table 2) [43]. These studies 
have revealed how AI can use subtle imaging features, not 
otherwise detectable by humans, to develop better predic-
tion tools than common density-based models.

Hybrid-DL models that incorporate both patient his-
tory and radiologic images have also been tested. When 
used to predict biopsy malignancy, a hybrid-DL algo-
rithm attained 87% sensitivity, 77.3% specificity, and an 
overall AUROC of 0.91. Even when trained on clinical 
data alone, the model performed significantly better than 
the Gail model, another commonly used breast cancer 
risk tool (AUROC, 0.78 vs. 0.54, respectively; p < 0.004) 
[44]. These findings are similar to those from Yala et al. 
[45], whose hybrid-DL model was compared to a risk fac-
tor-based regression model (RF-LR) that used traditional 
risk factor information only and the established Tyrer-
Cuzick model (TC). The findings showed that the hybrid-
DL model better predicted the development of breast 
cancer within 5 years based from the initial FFDM exam 
when compared to the RF-LR and TC (AUROC, hybrid-
DL: 0.70, RF-LR: 0.67, TC: 0.62, p < 0.05) (Table 3) [45].

Discussion

This review derived its findings from retrospective 
studies and small reader studies. While there have been 
preliminary discussions for implementing standards for 
integration of AI into clinical practice, benchmarks are 
controlled by multiple stakeholders with a current lag in 
guidelines [46]. Despite these shortcomings, the potential 
for AI in mammography is encouraging as evidenced by 
recent research. Independent groups, plus commercial 
organizations, have demonstrated the ability of machines 
to construct more efficient workloads for radiologists, all 
the while assisting in diagnosis and predicting cancer risk. 
As technological advancement continues, we expect AI 

will play a critical role to assist radiologists practicing 
mammography.

One of the largest obstacles facing the progression of 
AI in clinical medicine is the limitation to development 
and reliability of complex algorithms with the capability 
of handling multivariable data that factors into physician 
decision-making [47]. This also brings in the question of 
responsibility when evaluating complex medical cases. 
Furthermore, the usage of AI requires the implementa-
tion of an ethics code promoting transparency and reli-
ability. Geis et al. [48] call attention to the fact that various 
AI models are relatively straightforward to produce and 
develop, which emphasizes the importance of streamlin-
ing existing perspectives on the subject to focus on radiol-
ogy specifically. Few existing studies satisfactorily evalu-
ate how AI can be utilized in a way that maximizes impact 
in a responsible way, and further evaluation of the accu-
racy and reliability of AI is required in order for this tech-
nology to be confidently used in clinical application. De-
spite these limitations, our general expectation is that AI 
is capable of playing a significant role in mammography.

Future Challenges
AI is a field that does not yield to one approach or so-

lution. There are numerous algorithms that can be de-
ployed, not to mention countless ways of training, testing, 
and validating the models. This makes choosing the right 
framework still more difficult, but also for the same rea-
son, allows great flexibility for the integration of AI into 
mammography. Nevertheless, as AI is poised to enter into 
the field at an increasing rate, there are certain issues that 
must be anticipated.

After training a model, validation is required. The val-
idation stage refers to evaluating the model on how well 
it has been trained and tuning its hyperparameters. The 
steps of training and validation are extremely important 
when developing a clinically relevant model with opti-
mum predictive potential [19]. An increasing worry re-
volves around creating fair AI practices that promote eq-
uity in diagnosis and treatment [49]. Accordingly, devel-

Table 3. Comparison of area under receiver operator curve of hybrid-deep learning models and traditional 
models used for breast cancer prediction on digital mammograms

Study Traditional model Hybrid-deep learning 
model

Significance

Akselrod et al. [44], 2019 Gail model: 0.54 0.78 p < 0.004
Yala et al. [45], 2019 Tyrer-Cuzick model: 0.62 0.7 p < 0.05
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opers will need to prove their model’s applicability for 
large and diverse populations, including minority ethnic/
racial groups and those with less common risk factors. 
This will require cooperation with large hospital net-
works and other organizations with heterogeneous imag-
ing data to be able to properly train and validate the AI 
programs [50]. Indeed, AI systems that are generalizable 
across large populations are already being tested [21].

While FFDM is the most common imaging modality 
currently used, emerging screening technologies such as 
DBT are rapidly gaining popularity. Future AI programs 
must be able to handle the transition from 2-dimensional 
to 3-dimensional data, the latter of which will require 
greater storage and computing needs. As with FFDM, 
these models will need to train on large and diverse DBT 
datasets to remain clinically relevant [51]. Moving for-
ward, AI designers must adapt to any other novel mam-
mographic screening techniques or risk lagging behind 
the clinical setting.

Given the esoteric nature of both AI algorithms and 
mammography, it is crucial for AI programmers and ra-
diologists to work together to alleviate knowledge gaps 
from both areas. These groups must also be transparent 
with regulatory agencies, such as the United States Food 
and Drug Administration (FDA), who ultimately ap-
prove whether an AI model can be used as a legitimate 
medical tool. Most studies evaluating AI are retrospective 
and small-scale reader studies aimed to demonstrate non-
inferiority compared to mammography experts; it is un-
certain if prospective or other types of trials are required 
to convince stakeholders of a model’s clinical utility [52].

There have also been growing concerns over cyberse-
curity as the amount of data stored on medical databases, 
including imaging data, increases [53]. In order to deter-
mine the true performance of a model, only mammo-
grams linked to clinically confirmed outcomes are used. 
Thus, developers not only require a diverse array of mam-
mogram registries to use, but also detailed patient history 
– especially if the model is designed to use both imaging 
and clinical data. Novel technologies for disseminating 
medical imaging data are being implemented, such as 

blockchain [54]. Nonetheless, imaging data organizations 
may be reluctant to share millions of mammograms and 
patient history to research groups without complex data 
use agreements. Even once the AI tool has been approved 
and implemented, AI algorithms need to be continuously 
monitored for possible improvements and security risks 
to mitigate probability of imaging data sabotage [55].

Conclusion

Programs using AI may be useful with increased effi-
ciency, assistance in diagnosis, and risk prediction in 
mammography. Future work will need to consider appro-
priate standards when evaluating the suitability of a mod-
el to be used regularly in clinical practice.
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